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ON THE MOTION OF A PARTICLE OVER A ROUGH ROTATING PLANE" 

A.I. GRUDEV, A.YU. ISHLINSKII and F.L. CHERNOUS'KO 

The motion of a particle over a rough horizontal plane that rotates 
with constant angular velocity about a vertical axis is studied. The 
particle is acted on by dry friction with the plane that satisfies 
Coulomb's law. The equations of motion are solved asymptotically close 
to the point where the particle stops. Various types of motion with 
stopping are found. The motions are simulated numerically over the full 
range of variation of the parameters and initial conditions. As a 
result, typical trajectories of particle motion are constructed. The 
integral manifold which isolates in phase space the motions with 
stopping and the motions in which the particle moves away to infinity 
is found. The phase trajectories are constructed in this manifold. 

1. Formulation of the problem. We consider the motion of a particle p of mass m 
over a horizontal plane which moves with constant angular velocity 0 about a vertical axis. 
We assume that the particle and plane interact according to Coulomb's of dry friction with 

coefficient of friction f. We connect a moving Cartesian coordinate system OXYZ with the 
rotatinq plane, taking the vertical axis of rotation as the .a axis. We assume for clarity 
that the plane rotates counterclockwise, so that w>O. 

We write the equations of planar motion of the particle 
taking into account the forces of inertia and friction as 

x" = --fgv&’ + 6)*, + 2OY', y"= --fgv-'y' 
‘i = I(x)2 + (y')al'A > 0 

P in the 0~~s coordinate system 

+ 02Y- 20x’ 
(1.1) 

Here, V is the velocity of P relative to the moving plane, g is the acceleration due to 
gravity, and the dots denote derivatives with respect to time. 

We introduce polar coordinates r,cp in the Xy plane, and denote by 8 the angle 
between the relative velocity vector of P and the x axis (Fig.1). We then have 

Transforming from variables 
obtain the equations of motion 

x = r cos cp, y = r sin 9, 

I' = v cos 0, y' = v sin 8 

5, x', Y, Y' in system (1.1) to variables r, (p, u, 8, we 

r. = v ~0s (8 - rp), cp' = vr-r sin (e - fp) ,a n, 
v' = --fg + o*r cos (e - cp), 8' = -20 - o*rv-I sin (8 _ 6) 

(l.L) 

If the particle is at rest relative to the plane (v = 0) at some instant, and we have 
the condition 

r< a = fg0.P (1.3) 

then the particle will remain at rest, since the centrifugal force mdr does not in this 
case exceed the rest friction force fmg. 

rest 
We will change to dimensionless variables, taking as unit length the radius a of the 
zone of (1.31, and as the unit of time 0-r. In (1.2), we put 

r = ar’, t = o-Q , v = am-‘v’ (1.4) 

Further, instead of 8 we take the angle a between the velocity and radius vectors (Fig.11 

a=e---cp (4.5) 
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After reduction of Eqs.cl.4) and (1.5) using (1.31, Eqs.tl.2) become (we omit the prime 
on the dimensionless variables; the dot denotes the derivative with respect to dimensionless 
time t’) 

I. .-. L’(‘*.’ a, l,; = r cos CL - 1 

a’ -: -2 I- jru 1 .I- (7 ')sinr*, '1; := ur-l sin r* (U 3‘. 0, r %-" 0) 
(l.tij 

while the initial conditions are 
1 L= t Ot I' = r(), L: z: ug, CL = cL(), 'P = 'PO (1.5) 

Note that the first three equations of (1.6) do not contain ~0, and can therefore be 
integrated independently of the fourth equation. After integration, the cyclical coordinate 
'p is found by a quadrature. 

Since there are no parameters in (1.61, its solution depends 
only on the initial Conditions (1.7). The radius of the rest zone 
for system (1.6) is equal to unity, i.e., if r,ic1, v, = 0 in 

(1.7), then r E rO, UZO, a =aO, 'p- 'pa for all 1 > t,. 
AS u-+0, Eqs.(1.6) have singularities. We shall analyse 

these in Sect.2 by finding the asymptotic form of the motion close 
to the instants of stopping, i.e., when U is close to zero. Notice 
that the singularities of (1.6) are unimportant as r-+0, and 
are connected with the change to polar coordinates; they are not 
present for Eqs.tl.1) in Cartesian coordinates. 

In Sect.3 we give data of the numerical integration of system 
(1.6) for different typical initial Conditions (1.7). In Sect.4 we 
construct the integral manifold which separates the motions with 

Fig.1 
stopping, in which vs 0 for sufficiently large t>t*, from 
the motions which depart to infinity, in which r-00, v-+00 as 

t-too. 
a. The asymptotic behaviour of motions with stopping. Let the motion stop 

at some instant 1 ~: t+ , V (t*) = 0. We put 

r (t*) .= r*, u (t*) = 0, c1: (t*) = a*, cp (t*) = cp*, t - t* =r ‘G (2.1) 

We shall consider both the stopping (braking) process, for which r -< 0, in 12.1), and 
the start of motion, for which %::a 0. If r* -‘, 1 _ , only braking is possible; here, for ~'0, 
we have r zz r*, u-0, a zs a*, cp G cp*. If i-* >I, the motion must necessarily continue 
after stopping at the instant t*, i.e. v>O for z> 0. 

Using (2.11, we obtain from the second equation of (1.6): 

V =.= (r* cosa* - 1)2. +. . . (2.2) 

where throughout the dots denote small higher-order terms in a. On substituting (2.1) and 
(2.2) into the third equation of (l-6), we have 

&'Z__2 - r* (r* C0s a* - 1)-l sin a*z-l + . . . 

Hence, if r* sina* f 0, we have a' = 0 (7-l), a = 0 (in (T I), which contradicts the con- 
dition ~-+a* as T--+0 of (2.1). Thus the stopping Condition (2.1) can only hold if 
either r* = 0, or else sina*= 0. 
Stopping can then OCCUK in the cases 

We can assume without loss of generality that O,ia<2n, 
a* = O,a* =x, and r* = 0. 

We substitute expansion (2.21 in the first of Eqs.(1.6) and integrate it for small z 
with the initial condition r(1*)= r* of (2.1). In the case a* = 0 we obtain 

I" =z- r* + 1/z (r* - 1).c2 + . . ,, u = (r* - I)7 + . l). (2.3) 

In the case a* =z we have 

r = r* + ve (F* + 1)P + l . *, V = -(r* + l)z -I- . * * (2.4) 

He substitute expansion (2.3) for a;* = 0 
noting that a 

into the third of Eqs.(l.6). For small 'cf 
is small, we obtain, apart from higher-order terms, for r* > 0, r* + '1, 

a' = -2 - 9 (r* - I)-%-'a + _ . . (2.5) 

similarly, we substitute expansion (2.4) for a* = x into the third of Eqs.tl.6). In this 
equation we put 

a=n+$ (2.6) 

and simplify it by noting that z and p are small and assuming that r* >0 

p' = -2 - r* (r* + *)-V~ + . . . (2.7) 

We note that the case r* = 0 refers to stopping at the origin. 
with 

The velocity vector 
7<0 must then be in the opposite direction to the radius vectors, i.e., a* = n for 
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r* = 0. In the case r* = 0, we can write (2.4) as 

F = ‘/$ + . . . . v=--z+... 

while the third equation of (1.6) instead of (2.7) takes the form 

8' = -2 - 22-'f3 + . . . 

Eqs.(2.5), (2.7) and (2.91, obtained for the cases a* = O,a* = n, F* = 0, 

(2.8) 

(2.9) 
are of the 

same type: 
q’= -2 +y@ (2.10) 

where q is a variable, and y is a constant. 
We write the solution of the linear Eq.(2.10) 

q = c I T Ip + 2 (Y - l)-‘T (Y # 1) (2.11) 

Here and below, C is an arbitrary constant of integration. Depending on g either the 
first or the second term in (2.11) may be the main term for q as T-+0. We therefore obtain 
separately below the asymptotic behaviours for the different cases. We use relations (2.3)- 
(2.9) for r,v,a, and find the angle cp by a quarature with the aid of the last of Eqs.tl.6) 
and the relevant initial Condition (2.1). 

1) 0 < F* < ‘/2, a* = 0 

Comparing (2.5) and (2.10). we obtain 
y == r* (1 - ?.*)-I (2.12) 

Since O<y<l in this case, the first term in the solution (2.11) is the principal 
term. From (2.3), the condition v>O is only satisfied here for ~,<0. We have (2.3) 
for r and V, while a and q are given by 

a = C(-z)V+ . . . 

Cp = ,I+,* - (1 - r*)‘(F*)-I(2 - F*)-lc (-,)v+* + . . . 
(2.13) 

0 < F* < ‘i,, 0 < “,’ < 1, T -(. 0 

2) F* = ‘12, a* = 0 

Integration of the equation with y = 1 gives, instead of (2.11), a = Cz - 2tln Iz 1. 
Retaining the principal terms of the expansions, we obtain (omitting the terms with the 
constant Cl 

r==l/,-l’/,~s+ . . . . v=--l/,~+ . . . . a=-22InlzI+ . . . . (2.14) 
'p = 'p* + 2/,251n 1 T ) + . . . 

r.* = ‘I,, 7<0 

3) '/,<r*<l, a* =0 

In accordance with (2.12), we have y> 1 here, so that we retain the second term in 
(2.11) (we omit the term with constant C). Hence 

a = 2 (1 - r*)(2r* - i)% + . . . 

cp = 'p* - a/3 (1 - r*)2(r*)-1 (2r* - 1)-Y + . . . 

r/,<r*<l, r<O 

(2.15) 

For r and V we have (2.3). 

4) r*>i, a*=0 

By (2.121, we have ~(0, so that, with c # 0, the first term in (2.11) tends to 
infinity as z-+0. But this contradicts the condition a+0 as z-+0, which must 
hold here (a* = 0). Thus the solution that satisfies this condition will hold only for 
c = 0. While the solution is given by the same expressions (2.3), (2.15) as in the previous 
case, we can see here from (2.3) that the condition v>O only holds when r>O. Thus, 
whereas cases l)-3) refer to braking of the motion, case 4) refers to starting up from a state 
of rest. Moreover, in cases l)-3) the asymptotic behaviour is not unique (the constant C is 
arbitrary), whereas in case 4) it is unique (C = 0). 

5) F* >O, a* = n 

Eq.(2.7) for B has the form (2.10), where 
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s = -r* <I(* j- r)-’ < 0 (2.113) 

Hence, in the same way as in case 4), the solution (2.11) tends to zero as t *(J only 
if C _= 0. The variables r, 0 are given by (%.4), where u 0 only when z -;. 0. For 

a, 9,. we obtain by (2.61, (2.111, (2.16) 

a .= n - 2 (r* + 1)(2r* + I)-% + . . . (2.17) 

cp = ‘p* - a/a (r* +- l)a(r*)ml (2r* -j-l)%3 + . . .; z *;‘: 0 

6) t* = 0, a* =?E 

Eq.(2.9) for p has the form (2.101, where y = -2. As in cases 41, 51, we have to put 
c = 0. in solution (2.11). The variables r, v are given by (2.81, where z < 0, while 

CL = n - 213% + * I ., ‘p = cp - PfsT + . * .; ‘c < 0 (2.18 

Here, as in cases 4) and 51, the solution is unique, 

7) r* = 1, a* = 0 

This case is singular: an infinitly large term appears in (2.51. Thus the assumption 
that stopping occurs at a finite instant t * leads to a contradiction. This suggests that we 
should look for a solution in which the stopping conditions are reached asymptotically, i.e., 

r-+ 1, v+ 0, a-+Oas t+oo (2.19) 

On replacing coscc by 1 in the first two of Eqs.(l.6), we obtain the simplified system 

r' = 0, u‘ = r - ,l 

Its solution under Conditions (2.19) is 
r=l - be-', v = be-*, b > 0 i2.20) 

where b is a constant. Substituting (2.20) into the third of Eqs.(l.6), we obtain, apart 
from higher-order terms 

a' + 2 + &‘e’u -j- . . . = 0 

The principal (second and third) terms of this equation cancel each other if we take 
a z - 2& .+ . . . (2.21) 

It can now be seen, using (2.211, that the replacement of cosa by 1 in the first two 
of Eqs.(l.6), has introduced an error into the higher-order terms. 

Relations (2.20) and (2.21) give the principal terms of the asymptotic expansions. 
Notice that these expansions can be obtained in a regular way, by seeking r, U, a formally 
as power series in the argument e-", but we shall not dwell on this here. We shall also 
quote the principal terms of the expansion for the angle q, obtained from the last of Eqs. 
(1.61 and from (2.201, (2.211, 

g, =L- q* + b2e-*t +- , . . (2.22) 

The above cases l)-7) exhaust all the possible motions with stopping, i.e., the motions 
with which the velocity u vanishes at a finite instant t* or as t-+m. Only the principal 
terms of the expansions have been found, though the subsequent terms can be obtained if 
required. The data on the asymptotic solutions are collected in Table 1, where we give for 
each case the values of z for which this case holds (in case 7) t-+ m); the range of 
values of r*; the limiting values of a; the signs of r-r*; 
M of solutions of the given type for fixed a*, F*, q*; 

the signs of 9 -v*; the number 
the number of the expression that gives 

the solution in this case; the number of the figure that illustrates the case and is described 
in Sect.3. Notice that the signs of r - r* ,a---*,cp-m*, are always, except for a --a*, 
q--'p*, in easel), given uniquely by the expressions. In case 1) there is arbitrariness 
due to the arbitrariness of the constant C. 

Table 1 

No. T u lr-i*)f~-~*i N 1 Expression 1 Fig. 

The form of our solutions is shown in Fig.2, where, to fix our ideas, we take iIip* = 0. 
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Numerical simulation to high accuracy confirmed the validity of our asymptotic expansions. 
Note that these expansions can be used when integrating the equations numerically close to an 
instant of stopping. 

3, &gtm6ca2 s~~~t~~. For the numerical integration of system (1.6) under the initial 
Conditions (1.71, we made up a package of subroutines in PLA (01, language, whereby the 
motions could be modelled over a wide range of initial data in the intervals r. E[O, M). o,~lO,oo), 
CL0 E [O, 2n). The numerical integration was performed both in forward and reverse time with 
a variable time step, in accordance with the Runge-Kutta scheme. There was no loss of gener- 
ality in taking t,= (1. cpo =O. Special attention was paid to the trajectories with stopping. 
The results of integration were obtained as curves of r(t), e(tt. a(t\,9)(t), and as trajectories 
of the particle motion in a rotating and fixed Cartesian coordinate system. 

For instance, in Figs.3-7 below, the continuous lines are the trajectories of the 
particle P, in the fixed coordinate system, and the broken lines are the trajectories in the 
rotating system. For clarity, the dot-dash circle shows the boundary of the rest zone r<i. 
In Fig.3 we show motions with stops, the trajectories of which begin and end either on the 
boundary of the rest zone or at the origin of coordinates. 

In Fig.3,a we show the trajectory that starts at the origin and ends on the unit circle 
(the boundary of the rest zone). The corresponding initial data are 

r. = 0, I.0 = Uol = 1.165, a, = 0 (3.1) 
In (3.1), uol was chosen so that the particle P stops as r-1 1: as t--oo , we have the 

asymptotic behaviour for case ?)! see (2.20)-(2.22). If q,>vol, r,=O the particle departs 
to infinity, while if vo < 91 , It stops inside the circle rgl. 

In Fig.3,b we show the trajectory which starts on the unit circle and ends at the 
origin. The corresponding initial data, found by integration in reverse time, are 

i-o = 1, "@ = ro2 = 1.845, a, = --135.800 (3.2) 

Stopping occurs at the instant t* ~1.4: as t-t* we have the asymptotic behaviour for 
case 61, see (2.18). 

In Fig.3,c we show the trajectory that starts on the unit circle, passes through the 
origin with non-zero velocity %l? and ends on the unit circle according to the asymptotic 
behaviour for case 7). The initial data, found by integration in reverse time, are T$= 1; ",,= 
2.12; a, = -148.rEj". 

In Fig.4 we show the motions with stopping inside the rest zone. In Fig.4,a,b we see 
the trajectories with stopping for T* 0(0,%~). For Fig.4,a we have a(t*-O)<O, and for Fig. 
4,b, a (t* -- 0) > 0 in accordance with the asymptotic behaviour for case 1). The initial data 
for Fig.4,a, found by integration in reverse time, are: r, = 1.2; U, = 2.21: CC, = --140.1i", and for Fig. 
4,b: ro = 1.2; UQ=~.~% %=--!47". In Fig.4,c we see the motion with stopping for r* ='I2 in accordance 
with the asymptotic behaviour for Case 2). The initial data are here: r,, = 1.2; V, = 2.40; 0~" = 
--131.17°. In Fig.4,d we show the trajectory with stopping for r* ~(1/_1) (the asymptotic behaviour 
for Case 311, with the initial data r, = 1.2; u* = 2.52; a, = --125". 

Fig.2 

a b c 

Fig.3 
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Fig.4 

Fig.5 

Fig.6 
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Fig.7 

In Fig.5 we show the trajectory that approaches the rest zone from outside. In Fig.5.a 
we see the motion with stopping on the unit circle. As distinct from Fig.3,a,c, the stopping 
occurs here outside the rest zone in accordance with the asymptotic behaviour for case 5). 
The corresponding initial data are r0 = 2; L;,= 2.38; CC*= -127". It must be said that this motion 
(with stopping for CL* = II +o) is unstable, and just a slight change of the above initial 
data leads to the particle not reaching the rest zone and departing to infinity, as shown in 
Fig.5,b, obtained for I‘~ = 2; c0 = 2.3; a, = --145". 

In Fig.6 we see the motion with stopping outside the rest zone, after which particle P 
continues to move and departs to infinity. In Fig.6,a we have the case when stopping occurs 
in the rotating coordinate system (u= 0 at the instant t*), and in Fig.6,b, the case when 
the absolute velocity of P vanishes (here v#O). The initial data for Fig.6,a are r,,=X; 
i',, = 2.4; a, = -125". and for Fig.b,b: T@ = 2: L'# = 3.5; oL* = -115". 

In Fig.7 we see the trajectory for which the radius and velocity tend to infinity as 
t - co. the initial conditions for Fig.7 are rO= 1,~~ = 1,a, = 90'. The exact solution, which, 

departs to infinity, was obtained in /I/; the trajectory in the fixed coordinate system is 
here a logarithmic spiral; it was also shown that this solution, is limiting for all motions 
which depart to infinity. In a moving coordinate system, the asymptotic form of the motions 
which depart to infinity is 



)’ = (3 l/q-112 + . . .( v = (3 fig-1 t2 + ., a = -YE:2 + 2-1 + . .) 

9,=C--t+... 
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(3.3) 

Our numerical solution is in accord with this asymptotic form. 

4.' The separating integmt manifold. For any initial conditions, the motion of 
P is one of two types: either the particle departs to infinity in accordance with asymptotic 
form (3.31, or the velocity of P tends to zero, and it stops in the circle r< 1. In the 
latter case we have one of the asymptotic behaviours corresponding to cases l)-3), 5)-7). 

The "boundary" between these types of motion are those which end on the circle P = 1. 
It can be seen from Table 1 that these boundary motions are type 5) or 7). In case 5), the 
particle approaches the circle r= 1 from outside in finite time, and there is just one 
such trajectory for each point of the circle. In case 71, P approaches the circle r= ‘l 
from inside in infinite time; and an infinite number of trajectories enter each point of the 
circle. 

Consider the motion of P in three-dimensional phase space u, W, 21, ignoring the cyclical 
variable cp and putting 

u = VCOSU, 10 = vsin o! (4.~1 

Fig.8 Fig.9 

Fig.10 

Thevariables (4.1) are respectively equal to the projections of the relative velocity of P 
unto the radius vector and the perpendicular to it. The domain of possible motions in the 
variables U, W, P is the half-space r>OO, 

We fix r and find numerically the pairs of u, w, such that the motions starting with 
these U, W, r, end on the circle r= 1. We thus obtain a section by the plane r = const 
of the surface S, which separates the motions that depart to infinity from these which stop 
in the circle r<l. We found the section of S by many calculations; these sections are 
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shown in Fig.8. 'The numbers on the curves show the relevant values of 1.: 0. The domains 
inside the curves correspond to points which lie on trajectories with stopping, and the 
exterior domains, to unlimited motions. 

We mark out specially on the sections the points which lie on the tralectories shown in 
Fig.3,b,c and Fig.5,a. The points which lie on the trajectories of Fig.3,c (with stopping on 
the boundary of the rest zone and with passage through the origin), are marked by a cross. 
The points of the trajectories of Fig.5,a (stopping outside the rest zone) are marked by a 
light circle, and the points of Fig.3,b by a dark circle. In Fig.8 the points marked by a 
dark circle can be joined by a curve 1 which passes through the origin. The curve 1 is the 
projection of the trajectory of Fig.3,b onto the UW plane. 

In Fig.9 we mark by heavy lines the section of the surface S by the cylindrical surface 
with director i! and generators parallel to the r axis. 

The section of S by the plane I-=-O is obviously a circle of radius u,,r, see (3.1). As 
r increases, the section moves, deforms and decreases. Notice that, for r: _I, the sections 
contain the point u 7 l,! = 0. since, with the initial data v = 0, r-~/ 1 the particle P 
remains at rest. With r> 1 , the sections no longer contain the origin of the uw plane. 

The entire surface S consists of phase trajectories: if the initial point lies on S, 
then all the trajectories lie on S. The calculated picture of these phase trajectories is 
shown in Fig.10 in space (u, W, rl. The arrows indicate the direction is which the time varies. 

The surface S itself, i.e., the set of its sections, can be obtained as follows. First, 
by selecting r0 and (*#I with r 1 ‘2 , in the dialogue mode, we constructed the section h,, 

by graphical interpolation and smoothing of more than 100 points. Then, from 50 points of the 
curve, by numerical integration, we obtain the trajectories in forward and reverse time. 
Using the former, we can construct the sections (with step \, = 0.1) with r -1.3 and thus 
obtain the lower part of the surface S. The trajectories which issue from points of section 

& in reverse time can be used to obtain the section with r>l.:! and we thus complete 
the formation of the integral manifold. The trajectories themselves which form S are then 
drawn. 

It can be seen from Fig.10 that all the trajectories which start on S will end at a 
singular point with coordinates U1--u,=o, r==l, that corresponds to stopping on the 
boundary of the rest zone. Only one trajectory enters the singular point from above. It 
corresponds to the asymptotic behaviour of case 5), i.e., stopping outside the rest zone. 
All the other trajectories intersect the section r=l and approach the singular point from 
below. The trajectories which lie on one side of the broken line correspond to entry into 
the rest zone with O<a<n, and on the other side, with ;7. <a<2n. 

There is a further singular trajectory on the surface S, i.e., the separatrix correspond- 
ing to the motion of Fig.3,c. It hits the section r = 0 then instantaneously (for At = 0) 
jumps from the point (-1.165, 0, 0) to the point (1.165, 0, 0), which corresponds to passage 
of P through the origin, for which 1 LIE 1 = n. The separatrix, see Fig.10, then enters the 
singular point (0, 0, 1). All the other trajectories are divided by the separatrix into two 
groups. 

To sum up, we have described all the trajectories of motions with stopping, which form 
an integral manifold. 
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